skip to main content


Search for: All records

Creators/Authors contains: "Maurer, Peter C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.

     
    more » « less
  2. Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting ensembles with limited qubit controls and unknown spin locations. The generated states enable sensing beyond the standard quantum limit (SQL) and approaching the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. 
    more » « less
  3. Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications. 
    more » « less
  4. Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has enabled a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultra-sensitive immunoassays. However, a broader application in the life sciences based on nanoscale nuclear magnetic resonance spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate a new approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub-5 nm) functionalization architecture provides precise control over protein adsorption density and results in near-surface qubit coherence approaching 100 {\mu}s. The developed architecture remains chemically stable under physiological conditions for over five days, making our technique compatible with most biophysical and biomedical applications. 
    more » « less
  5. Understanding the coordination of cell-division timing is one of the outstanding questions in the field of developmental biology. One active control parameter of the cell-cycle duration is temperature, as it can accelerate or decelerate the rate of biochemical reactions. However, controlled experiments at the cellular scale are challenging, due to the limited availability of biocompatible temperature sensors, as well as the lack of practical methods to systematically control local temperatures and cellular dynamics. Here, we demonstrate a method to probe and control the cell-division timing inCaenorhabditis elegansembryos using a combination of local laser heating and nanoscale thermometry. Local infrared laser illumination produces a temperature gradient across the embryo, which is precisely measured by in vivo nanoscale thermometry using quantum defects in nanodiamonds. These techniques enable selective, controlled acceleration of the cell divisions, even enabling an inversion of division order at the two-cell stage. Our data suggest that the cell-cycle timing asynchrony of the early embryonic development inC. elegansis determined independently by individual cells rather than via cell-to-cell communication. Our method can be used to control the development of multicellular organisms and to provide insights into the regulation of cell-division timings as a consequence of local perturbations.

     
    more » « less
  6. Abstract

    The progress in integration of nanodiamond with photonic devices is analyzed in the light of quantum optical applications. Nanodiamonds host a variety of optically active defects, called color centers, which provide rich ground for photonic engineering. Theoretical introduction describing light and matter interaction between optical modes and a quantum emitter is presented, including the role of the Debye–Waller factor typical of color center emission. The synthesis of diamond nanoparticles is discussed in an overview of methods leading to experimentally realized hybrid platforms of nanodiamond with gallium phosphide, silicon dioxide, and silicon carbide. The trade‐offs in the substrate index of refraction values are reviewed in the context of the achieved strength of light and matter interaction. Thereby, the recent results on the growth of color center‐rich nanodiamond on prefabricated silicon carbide microdisk resonators are presented. These hybrid devices achieve up to fivefold enhancement of the diamond color‐center light emission and can be employed in integrated quantum photonics. 

     
    more » « less